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Abstract— Our aim is to obtain efficient algorithms for image
regularization optimized for removing different types of noise. To
accomplish this, we combine total variation regularization with
a noise-specific way to measure the fidelity between the noisy
image and the reconstruction. We find a minimum of the resulting
functional with a quasi-Newton method, which converges faster
than the common method of gradient descent. As examples we
consider Poisson noise and impulse noise. We prove convergence
of the algorithm for a large class of fidelity terms.

I. INTRODUCTION AND BACKGROUND

Our work has been motivated by the promising results of
total variation regularization used for images corrupted by
Poisson noise. It is shown in [1] that having a data fidelity
term reflecting the noise characteristics of the image provides
a better image reconstruction. This leads us to consider total
variation algorithms with a general data fidelity term. The
method of gradient descent is appropriate in this case, since
it allows to minimize easily a large class of functionals.
Unfortunately, the convergence rate of this algorithm is very
slow. Instead, we generalize the fixed-point method of Vogel
and Oman [2], which can also be cast as a quasi-Newton
method. In the case of the L2 data fidelity term, the algorithm
has a linear convergence rate [3].

A. Total variation regularization

The problem of denoising an image is an ill-posed inverse
problem often solved by means of regularization. We consider
the variational approach, where the denoised image is the
solution of an optimization problem of the following form:

min
u

F (u) =
∫

R(u) + λ

∫
D(u, d). (1)

Here, d is the image to be denoised; D(u, d) is the data
fidelity term, which measures the dissimilarity between d and
the reconstructed image, u; R(u) is the regularization term in
which prior knowledge or assumptions about the solution are
enforced; and λ is the regularization parameter that balances
the relative effect of the two terms. The regularization term
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we will use is total variation, R(u) = |∇u|, for its ability to
preserve edges in images. It was first proposed in this context
by Rudin, Osher and Fatemi [4], together with a data fidelity
term (in effect) of D(u, d) = |u− d|2.

II. NOISE-BASED DATA FIDELITY TERMS

A data fidelity term is an appropriate measure of dissimilar-
ity between a noisy image and the reconstruction. Knowledge
of the noise can help define this measure. For example, it is
shown in [5] using probability arguments that the L2-norm
data fidelity term, D(u, d) = |u − d|2, is most appropriate
for removing additive, Gaussian noise. The L2-norm often
works for other types of noise. For Poisson noise, however,
the noise is signal dependent; the amount of noise increases
with the image intensity. Removing this noise without losing
image features requires the amount of regularization to vary
spatially. As shown in [1], the ideally suited data fidelity term
for this is D(u, d) = u − d log u. We will see in Section V
examples of the use of this term, computed using the algorithm
of Section III.

The Poisson data fidelity term was used with total variation
regularization in the context of positron emission tomography
by Jonsson, Huang, and Chan [6].

Another example of non-Gaussian noise is impulse noise,
in which a random portion of the pixels are corrupted. A
particular case is salt-and-pepper noise, where the corrupted
pixels have equal probability of having zero or full inten-
sity. Applying the arguments of [5], [1] yields the following
heuristic analysis. We can consider our task to be to find the
reconstruction u that maximizes the conditional probability
P (u|d). Applying Bayes’s Law, we can rewrite this as

P (u|d) =
P (u)P (d|u)

P (d)
. (2)

Taking negative logarithms, we see that we wish to find the
u that minimizes − log P (u) − log P (d|u). Total variation
regularization arises from the choice of the prior

P (u) = e−β
R
|∇u|, (3)

for some constant β; this and other constants will determine
the corresponding value of λ. The likelihood P (d|u) follows
from the noise model. In the case of salt-and-pepper noise,
there is q, 0 ≤ q < 1, such that for each pixel i, the probability
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is as follows:

P (di|ui) =

 1− q, di = ui

q/2, di = 0
q/2, di = 1

, (4)

where we have assumed that the intensity values lie in [0, 1].
Assuming independence, we get roughly:

P (d|u) = (q/2)|{i:di 6=ui}|(1− q)N−|{i:di 6=ui}|

= (q/2)‖u−d‖0(1− q)N−‖u−d‖0
(5)

(this fails to account for where u is 0 or 1 and a “corrupted”
pixel has the same value). Here N is the number of pixels
and ‖·‖0 the L0 norm, which is simply the cardinality of the
support (and not actually a norm). Taking negative logarithms,
we obtain

− log P (d|u) = ‖u− d‖0 log
(
(q/2(1− q)

)
+ N log(1− q).

(6)
The result is that the reconstruction should be a solution to

min
u

F (u) =
∫
|∇u|+ λ ‖u− d‖0 , (7)

where λ depends on β and q. In this paper, we only wish to
consider convex functionals, so we will approximate the L0

norm by the L1 norm, and replace (7) with

min
u

F (u) =
∫
|∇u|+ λ

∫
|u− d|. (8)

The L1 data fidelity term was introduced by Nikolova [7]
for total variation regularization of images with impulse noise;
see also [8].

III. A QUASI-NEWTON ITERATION

Now we turn to our method for computing minimizers of
the regularization functionals. We begin with the example
of Poisson noise, where we seek to solve the following
optimization problem:

min
u

F (u) =
∫
|∇u|+ λ

∫ (
u− d log(u)

)
. (9)

According to [1], this minimum exists and is unique. We
discretize the problem with a uniform, rectangular grid with
spacing ∆x. We consider u and d to be in vectorized form:
if the images are of size m × n, then u and d are vectors
of length N = mn. Let Dx, Dy be the matrices repre-
senting the finite-difference approximations of differentiation
with respect to x and y. To be specific, we use forward
differencing with Neumann boundary conditions. Thus, |∇u|
becomes

∑N
i=1

√
(Dxu)2i + (Dyu)2i . Since this quantity is not

differentiable, we add a small constant ε:

F (u) =
N∑

i=1

√
(Dxu)2i + (Dyu)2i + ε+λ

N∑
i=1

(
ui−di log(ui)

)
.

(10)
First, we consider Newton’s method. For that it is required

to calculate the gradient and the Hessian of the functional. Let
Qu be the diagonal matrix with entries

(
(Dxu)2i + (Dyu)2i +

ε
)−1/2

, and let Lu = DT
x QuDx + DT

y QuDy . Then the first

two derivatives of (10) can be represented in the following
way:

∇F (u) = Luu + λ
u− d

u
, (11)

∇2F (u) = Lu + L′
uu +

λd

u2
. (12)

Here and henceforth, arithmetic operations involving vectors
is componentwise, and where appropriate we identify a vector
with the diagonal matrix having the same entries. Then the
iteration for Newton’s method is:

un+1 = un − tn∇2F (un)−1∇F (un), (13)

where the step size tn is either chosen to be 1 or by means
of a line search. The rapid convergence that is possible with
Newton’s method relies upon the Hessian of F not varying too
rapidly. However, that F is even C2 relies on the addition of ε.
A small value of ε, necessary for edge preservation, will both
slow down the convergence of Newton’s method, and make
the Hessian ill-conditioned, making the computation of (13)
more difficult.

As an alternative, we adopt a generalization of the approach
in [2]. At each iteration, we approximate ∇F (u) with a linear
function Gn by substituting some of the terms with their value
from the preceding iteration:

Gn(u) = Lun
u + λ

u− d

un
. (14)

The derivative of this approximation is simply

Hn = Lun + λ/un. (15)

We use this approximate Hessian in a quasi-Newton iteration:

un+1 = un − tnHn
−1∇F (un). (16)

In the case of tn ≡ 1, this can be reformulated as

un+1 = H−1
n

λd

un
, (17)

which shows that (16) is equivalent to solving the linear
equation Gn(un+1) = 0.

Each Hn is positive semidefinite and sparse. Provided the
components of each un are neither too large nor too small,
each Hn will be well-conditioned and not expensive to invert.
The approximate Hessian differs from the true one even when
n → ∞. Therefore, we cannot expect quadratic convergence.
However, numerical results show that the algorithm still con-
verges to a correct solution much faster than gradient descent,
as we will see in Section V.

A. A quasi-Newton method for general noise

We now describe the extension of (16) to an algorithm that is
flexible in the choice of data fidelity term, for use in removing
any of many different types of noise. We wish to solve the
following:

min
u

F (u) =
∫
|∇u|+ λ

∫
D(u, d). (18)

In order to extend the proposed algorithm for a more general
data fidelity term, we model the approximation of the Hessian
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in a similar way as we did for the Poisson noise data fidelity
term. To do that, we require that ∇uD(u, d) can be written
in the form of E1(u, d)u − E2(u, d)d. Then we approximate
the Hessian with Hn(u) = Lun(u) + E1(un)I , and obtain a
quasi-Newton iteration as in (16).

As an example, we consider the L1 data fidelity term, for
which D(u, d) = |u−d|. As before, to obtain differentiability
we will use

D(u, d) =
√

(u− d)2 + δ, (19)

for some small δ > 0. Note that the solution uδ of (18) will
converge in L1 to u0 as δ → 0. We have

∇uD(u, d) =
1√

(u− d)2 + δ
u− 1√

(u− d)2 + δ
d, (20)

so E1(u, d) = E2(u, d) = ((u− d)2 + δ)−1/2.

IV. PROOF OF CONVERGENCE

Theorem 4.1: Let the functional F be defined on E ⊂ RN

by (18). Fix d ∈ E. Let u0 ∈ E, and let S be the sublevel set
S = {u ∈ E : F (u) ≤ F (u0)+1}. Assume that u 7→ D(u, d)
is both C2 and strictly convex on S, and weakly coercive.
Suppose that∇uD(u, d) = E1(u, d)u−E2(u, d)d, and assume
that E1 ≥ mI uniformly on S, for some m > 0. Let un be
defined iteratively by (16), with the step size tn chosen by
a backtracking line search. Then un converges to the unique
minimizer of F .
The restriction to a subset E allows the possibility of D(u, d)
not being defined on all of RN . For example, in the case of the
Poisson data fidelity term, we would take E to be the positive
orthant of RN . We also point out that in practice, the line
search is usually not required, and the algorithm converges
with a uniform step size of 1. Proof:

We proceed inductively. Note that u0 ∈ intS. Given un ∈
intS, as in Section III we let Hn = Lun + E1(un). Since
Lun is positive semidefinite, Hn ≥ mI uniformly on S, and
in particular is invertible. The boundedness on RN of the finite
difference operators Dx, Dy ensures that F is C2. The weak
coercivity of u 7→ D(u, d), and hence of F , guarantees that S
is compact. Then Hn and ∇2F are bounded above on S, by
some constants M1 and M2 respectively.

Our quasi-Newton step direction is vn = −H−1
n ∇F (un).

We choose a step size tn with a backtracking line search as
follows. We fix α ∈ (0, 1

2 ), β ∈ (0, 1). Starting with tn = 1,
we replace tn with βtn until the following exit condition is
satisfied:

F (un + tnvn) ≤ F (un) + αtn∇F (un)T vn

= F (un)− αtn∇F (un)T H−1
n ∇F (un).

(21)

To show that this condition is eventually met, suppose t ≤
t∗ := min

{
2m
M2

(1 − α), 1
}

is chosen sufficiently small that
un + tvn ∈ intS. (We shall show shortly that the former
condition implies the latter.) Then by Taylor’s theorem, for
some ξ between un and un + tvn (hence belonging to S, by

the convexity of F ):

F (un + tvn)− F (un) = tvT
n∇F (un) + t2vT

n

∇2F (ξ)
2

vn

≤ tvT
n∇F (un) + t2

M2

2
‖vn‖2

= −t∇F (un)T H−1
n ∇F (un)

+ t2
M2

2

∥∥H−1
n ∇F (un)

∥∥2

≤ −t∇F (un)T H−1
n ∇F (un)

+ t2
M2

2m
∇F (un)T H−1

n ∇F (un).

(22)

Since t(−1 + tM2/2m) ≤ −αt by the choice of t, the exit
condition (21) is satisfied. Since Hn is positive definite, H−1

n

is too, so F (un + tvn) ≤ F (un) whenever t ≤ t∗.
Let J = {t ≥ 0 : un + tvn ∈ intS}. Since S is convex,

J is an interval. Let tS = supJ . If tS = ∞, then t∗ ∈ J .
Otherwise, by the continuity of F , there must be tJ ∈ J such
that F (un + tJvn) > F (un). Then tJ > t∗ by the preceding
calculation. It follows in either case that t ≤ t∗ ⇒ t ∈ intS.

Let tn denote the first t satisfying the exit condition (21)
produced by the line search, so tn ≥ βt∗. Let un+1 = un +
tnvn. We then have that F (un) is a decreasing sequence, and
converges to some `. Since (un) is bounded (as S is), it suffices
to show that every convergent subsequence of (un) converges
to a minimizer of F , since the strict convexity of F guarantees
that there will be at most one minimizer.

Suppose unk
→ u∗. Then both F (unk

) and F (unk+1)
converge to `. By the backtracking exit condition, we have

‖F (unk+1)− F (un)‖ ≥ αtnk
∇F (unk

)T H−1
nk
∇F (unk

)

≥ αβt∗
1

M1
‖∇F (unk

)‖2 ,

(23)

from which follows that ∇F (unk
) → 0. ∇F is continuous,

so ∇F (u∗) = 0. This and the convexity of F imply that u∗

is a minimizer of F , completing the proof.
We now check that the Poisson and (approximate) L1

data fidelity terms meet the conditions of the theorem. For
D(u, d) = u− d log u, we let E = {u ∈ RN : each ui > 0},
and fix any d, u0 ∈ E. Then u 7→ D(u, d) is clearly C2 and
weakly coercive on all of E. Since ∇2

uD(u, d) = (d/u2), we
have strict convexity on E as well. We have E1(u, d) = 1/u.
The condition that E1 ≥ mI for some m > 0 uniformly would
not be true on E, but it is true on the sublevel set S. Indeed,
‖u‖ is bounded on S, so 1/ ‖u‖ is bounded away from 0.

In the case of D(u, d) =
√

(u− d)2 + δ, we can take
E = RN . In this case we have strong coercivity of u 7→
D(u, d). Since ∇2

uD(u, d) = δ
(
(u − d)2 + δ

)−1/2
, both

strict convexity and being C2 are true for δ > 0. Since
E1 =

(
(u − d)2 + δ

)−1/2
, that E1 ≥ mI uniformly on S

follows from the coercivity, as in the Poisson case.

V. NUMERICAL RESULTS

The numerical results achieved through this quasi-Newton
method show that the algorithm works quite well. First, we
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present reconstruction of images corrupted by Poisson noise.
As a test image we use an image consisting of three concentric
circles on a black background with a dark frame (Figure 1(a);
the colormap has been adjusted to emphasize contrast between
different intensity values). It contains both constant regions
and sharp edges, a case in which total variation is an ap-
propriate regularization term. Poisson noise is added to the
image, which produces a signal dependent corruption. A one-
dimensional slice through the center of the noisy image is
shown in Figure 1(d). For an initial point u0 in our iteration we

(a) (b)

(c) (d)

Fig. 1. (a) An image consisting of uniform regions with sharp edges. (b) A
cross-section of the image through the center showing the intensity pattern we
want to preserve. (c) The image corrupted by Poisson noise. (d) The cross-
section indicating that the noise is signal dependent: higher intensities have
greater variance.

use the noisy image. We choose λ according to the discrepancy
principle, so that the value of the data fidelity term of the
reconstructed image is the same as that of the original image.

First we apply the quasi-Newton method with the L2-norm
data fidelity term (which is the algorithm of [2], applied to
the Rudin-Osher-Fatemi model [4]) to denoise the image.
This method has a fast convergence rate, but it implicitly
makes the assumption that the noise is Gaussian, which does
not account for the signal dependence of the Poisson noise.
Thus, equal denoising is applied to stronger and weaker noise,
which results in underregularizing or oversmoothing. It can
be seen in Figure 2(b) how the obtained solution still has
significant noise in the region of higher intensity values. If we
decrease the regularization parameter only enough to remove
the noise, we are unable to correctly reconstruct the image in
the regions of lower intensity values: the frame is merged with
the background (Figure 2(d)).

(a) (b)

(c) (d)

Fig. 2. (a),(b) A solution obtained through a quasi-Newton method with an
L2 data fidelity term: the edges are preserved correctly, however some noise
is still present in the image. (c),(d) The regularization parameter is decreased:
the cross-section is completely smoothed, cleaned from any noise, but the
frame is missing.

Using a Poisson noise data fidelity term eliminates this
problem. After only 20 iterations, the algorithm converges to
the solution displayed in Figure 3. The noise is removed at all
scales, and the low-contrast frame is well preserved.

(a) (b)

Fig. 3. (a) The result obtained with the Poisson noise data fidelity term. (b)
The cross-section showing the preservation of the sharp edges and complete
removal of noise. The frame is much clearer than in the noisy image.

For a second example, we use the standard cameraman
image (Figure 4). Salt-and-pepper noise is added, with 20% of
the pixels corrupted. As before, we compare with the Rudin-
Osher-Fatemi model. Figure 4(c) shows the result, where the
parameter λ is chosen to give the weakest regularization that
removes the noise. The image is oversmoothed. If the L1-
norm data fidelity term is used instead, we obtain Figure 4(d).
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The noise is removed, and the image is well restored. The
algorithm converged in 40 iterations, where δ was initially
chosen to be relatively large, δ = 1, to speed convergence,
then progressively decreased to δ = 10−6 to improve accuracy.

(a) (b)

(c) (d)

Fig. 4. (a) Cameraman image. (b) 20% of the pixels have been corrupted by
salt-and-pepper noise. (c) Result of denoising with an L2-norm data fidelity
term. The weakest regularization that removes the noise still oversmooths the
image badly. (d) Reconstruction with an L1-norm data fidelity term. The noise
is removed, and the image is well restored.

A. Convergence rate

Figure 5(a) compares the convergence rate of a gradient
descent method and our quasi-Newton method. To estimate
the error we consider the quantity ||un − u∗||/||u∗||, where
u∗ is the minimum achieved through the quasi-Newton al-
gorithm. The gradient descent method with a step size of
10−4 converges very slowly toward the solution. The first 100
iterations are displayed; the rate remains the same afterwards,
and after 1000 iterations the error has changed slightly from
1.43 × 10−2 to 1.23 × 10−2. The quasi-Newton method, on
the other side, reaches an error of 10−5 within the first 100
iterations. It turns out the line search is not necessary for
the quasi-Newton method with the noisy image as an initial
guess: even if it is incorporated in the algorithm, the step size
chosen is still 1. However, it is required when the starting
point is far from the correct solution. We test the algorithm
choosing a random image for an initial guess. In this case the
gradient descent method requires more than 5000 iterations
to converge. The quasi-Newton method uses the backtracking
line search to choose a correct step size. First it selects a
small step until it gets closer to the solution, and then quickly

converges with a step size of 1. As a result the algorithm
achieves global convergence with an error 10−5 after 40 more
iterations (Figure 5(b)).

(a)

(b)

Fig. 5. (a) Convergence rate with a noisy image as a starting point. The
quasi-Newton method starts with rapid convergence to a solution, visually
indistinguishable from the correct one, and then gradually reduces the error
to 10−5. The gradient descent method approaches the minimum at a constant
rate and requires much more than 100 iterations to find the solution. (b)
We use a random image as a starting point. The randomness in the initial
choice does not affect significantly the convergence rate of the quasi-Newton
algorithm and it converges in slightly more iterations.

To analyze the rate of convergence, we plot the error of each
iteration versus the error of the previous iteration on a log-log
plot (Figure 6). The graph approximates a line with a slope 1,
which suggests a linear convergence rate. Assuming that the
relationship is indeed linear, we can calculate the convergence
rate and for the first several iterations it is as low as 0.8, and is
always lower than the rate of 0.9998 for the gradient descent
method. The huge difference between the number of iterations
required to find a solution justifies the higher computational
cost for computing the approximate Hessians. The image ex-
amples clearly show how the proposed regularization removes
the noise, and at the same time preserves sharp edges and low-
contrast features. So we conclude that the proposed algorithm
is very appropriate and efficient for regularization of images
corrupted by non-Gaussian noise.

REFERENCES

[1] T. Le, R. Chartrand, and T. J. Asaki, “A variational approach to recon-
structing images corrupted by Poisson noise,” J. Math. Imaging Vision,
2007. To appear.

[2] C. R. Vogel and M. E. Oman, “Iterative methods for total variation
denoising,” SIAM J. Sci. Comput., vol. 17, no. 1, pp. 227–238, 1996.

[3] D. Dobson and C. Vogel, “Convergence of an iterative method for total
variation denoising,” SIAM J. Numer. Anal., vol. 34, pp. 1779–1791, 1997.



6

(a) (b)

Fig. 6. Log-log graphs of the relative residual rn+1 versus rn, where
rn = ‖un − u∗‖ / ‖u∗‖, are used to demonstrate the convergence rate of
the quasi-Newton algorithm: (a) with the noisy image as a starting point; and
(b) with a random image as a starting point. In both cases the graph implies
a linear convergence rate.

[4] L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise
removal algorithms,” Physica D, vol. 60, pp. 259–268, 1992.

[5] M. Green, “Statistics of images, the TV algorithm of Rudin-Osher-Fatemi
for image denoising and an improved denoising algorithm,” CAM Report
02-55, UCLA, 2002.

[6] E. Jonsson, S.-C. Huang, and T. Chan, “Total variation regularization
in positron emission tomography,” Tech. Rep. 98-48, UCLA Group in
Computational and Applied Mathematics, 1998.

[7] M. Nikolova, “Minimizers of cost-functions involving nonsmooth data-
fidelity terms. Application to the processing of outliers,” SIAM J. Numer.
Anal., vol. 40, pp. 965–994, 2002.

[8] M. Nikolova, “A variational approach to remove outliers and impulse
noise,” J. Math. Imaging Vision, vol. 20, pp. 99–120, 2004.


